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ABSTRACT

This paper deals with the problem of selecting the best population from among k(4 2)
populations which are location-scale models. New selection procedures are proposed for
selecting the unique best in terms of the largest location parameter. The procedures
include preliminary tests which allow the experimenter to have an option to not select
if the statistical evidence is not significant. Two probabilities, the probability to make
a selection and the probability of a correct selection, are controlled by these selection
procedures. Applications to the normal mean models are considered. Comparisons between
the proposed selection procedures and certain earlier existing procedures are also made.
Finally, a two-stage procedure for the normal means problem is considered. ' -,- (
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1. INTRODUCTION

The problem of selecting the best population from among k(_ 2) populations has been

studied extensively. A lot of selection procedures have been derived for different selection

goals by several authors. Among them, Bechhofer (1954) introduced the indifference zone

approach for selecting the normal population with the largest mean. In his approach,

the determination of the sample size depends entirely on the indifference zone assump-

tion. Also, the probability of a correct selection depends on the unknown parameters and

is analogous to the power of a test. However, in this formulation, a probability that is

analogous to the probability of type-I error of a test was not taken into consideration.

Bechhofer's procedure forces the experimenter to make a selection, and often that proce-

dure is not used in practical application because of the lack of a statistical test for the

homogeneity of the parameters as stated in Simon (1977). It should be pointed out that

in another approach called the subset selection this drawback is not there. This approach

due to Gupta (1956, 1965) as well as Bechhofer's --. - roach are both discussed in detail in

the monograph by Gupta and Panchapakesan (1979).

Based on the preceding reasoning, Bishop and Pirie (1979) introduced a selection

procedure in which a test of homogeneity was conducted. The procedure allows the ex-

perimenter to have the option not to make a selection if the statistical evidence is not

significant. Later, Chen (1985) proposed a modified selection procedure for the problem of

selecting the best normal population. He considered a preliminary test based on the sam-

pled spacing between the largest and the second largest ordered statistics. If the statistical

evidence of the preliminary test is not significant, the experimenter decides not to make
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a selection. Otherwise, he or she selects the population yielding the largest sample mean

value as the best population. The sample size is determined to control both the prob-

ability of type-I error for the preliminary test and the probability of a correct selection.

Analogous to Chen (1985), Chen and Mithongtae (1986) proposed selection procedures for

two-parameter exponential distribution models. However, both of their procedures cannot

be applied to a case where the common scale parameter is unknown. Later, Leu and Liang

(1989) proposed selection procedures which improve the results of Chen and Mithongtae

(1986) and cover a case where Chen and Mithongtae's procedures cannot be applied.

In this paper, we generalize the problem proposed by Chen (1985) to location-scale

models. Selection procedures based on one-sample are derived according to whether the

common scale parameter is known or unknown. Exact sample sizes are determined to

control both the probability of type-I error and the probability of a correct selection.

Applications to the normal model cases are considered. Comparisons between the proposed

selection procedures and certain earlier existing procedures are also made. Finally, a two-

stage procedure for the normal means problem is considered.

2. FORMULATION OF THE PROBLEM

Let X I,... , rk denote k( _ 2) independent location-scale models which have abso-

lutely continuous cumulative distribution functions (cdf) G(' ),... , G(-), respec-

tively, where > 0, -oo < Oi < oo, i = 1,...,k and -oo < z < .Let_=(,..., )

and let 0(119 5 ... < G[k] denote the ordered values of Bi,..., 9 k. It is assumed that the

exact pairing between the ordered parameters and the unordered parameters is unknown.

The population associated with the largest location parameter 6[k] is called the best popu-

3



lation. Assume that the experimenter is interested in the selection of the best population.

Let

r, = {R(_Or1O = (oil,...,o 0), -00 < o, < 00, o > o1

be the parameter space. We partition the parameter space into the following three sub-

spaces:

the preference zone: fn(PZ) a {(f,o) E _I - 0[k-1] > 6, 6 > o},
a

the nonselection zone: fl(NZ) = (_,a) E f10[k-1] = 0[k]),

the indifference zone: f)(IZ) = 11 - fO(PZ) - fl(NZ),

where 6 is a known positive constant.

Denote the event of a correct selection by CS and the event of selection by S. The goal

is to develop a selection procedure R to select a single best population with a minimum

sample size from each of the k populations such that the following probability requirements

are satisfied:

PLO,,)(SIR) :_ a for all (,a) E 0 (NZ) (2.1)

and

P(,,)(CSIR) P* for all (_,a) E fO(PZ) (2.2)

where a E (0, 1) and P* E (1/k, 1) are preassigned constants.

The selection procedure R depends on whether the common scale parameter a is

known or unknown.

3. SELECTION PROCEDURE WITH KNOWN SCALE PARAMETER

Let Xi, j = 1,..., n be n independent observations from population wi, where iri ~

G(--*'), i = 1,...k, , respectively. Let Y = Y(Xi,..., Xi,,) be an appropriate statistic
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for e,. We assume that Y has the cdf Fa (UO-). Also let Y[I <... -Yk denote the order

statistics of Y,... , Yk. When a is known, we propose a selection procedure as follows:

Rj: Select the population yielding Y[] as the best population if Y[k] - Y[k-1] >

A(n, a)a; otherwise, do not make a selection, where n and A (n, a) are chosen to satisfy the

probability requirements (2.1) and (2.2).

Given rule R 1, we need to investigate the supremum of P(e,,)(SIRI) for (_,oa) E

f)(NZ) and the infimum of P(?,,)(CSIRj) for (_,a) E fl(PZ). We need to make two

assumptions here:

(A) The probability density function (pdf), fn, of Fn is log-concave.
00

(B) For each 6 > 0 and positive integer m, f Fn(y + 6)dFn(y) is strictly increasing in
-00

n, and tends to 1 as n --+ 0o.

These two assumptions are appropriate for many applications. Firstly, we consider a lemma

derived by Kim (1986).

Lemma 3.1. Assume that log fn(y) is concave. Then for any fixed c > 0, P(e,j){Y[k] -

Yk- I > c) is non-increasing in 0[11 and hence

PQ,o){Ytl - Y[k_ 11 > c1 < PLo,o){IY(k) - (kl) > C}

for all (1,o) E 0, where e° = (9°,... ,oo),oj1 = -oo, i = 1,...,k - 2,001 = OI,] for

i = k - 1, k, and Y(j) is the statistic associated with parameter e[i], i = 1,... k.

In the sequel, we let Zi = Yw)-etil, i= 1,...,k and let Ha(t) be the cdf of Z1 - Z2.

Then

Hn(t) = Fn(y + t)dFn(y). (3.1)

We note that Ha(t) is a symmetric distribution function and hence Ha (-t) = 1 - Hn (t).
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By using Lemma 3.1, we have the following theorem:

Theorem 3.2. sup P(O,,)(SIRj) = 2H,(-A(n,a)). (3.2)
O(NZ)

Proof: By Assumption (A) and Lemma 3.1, we have

P(e,o)(SIR,) - P(_,,){Y[k] - Y[k-11 > A(n,a)a}

< P(_o,){Y(k)- Y(k-1)1 > A (n, a)a}.

Hence

sup P(e,,)(SjRI) - P{IZk - Zk-1 > A(n,c)a}
n(NZ)

= ](-A(n, a)).

In order to satisfy the probability requirement (2.1), we may let 2Hn(-A(n, a)) = a.

That is,

A(n, a) = -H -(a/2). (3.3)

Remark 3.1. A(n, a) _ 0, since Hn is symmetric.

Lemma 3.3. The A(n,a) defined by (3.3) has the properties: A(n,a) I n and A(n,ca) -- 0

as n - oo, for each fixed a, 0 < a < 1.

Proof: For n1 _> n 2, if A(ni,a) > A(n2 , a), then by Assumption (B) we have

a/2 - Hn, (-A(ni,a)) = 1 - Hn, (A(ni,a))

1 1- Hn1(tW < 1 - Hn2(t W - Hn,(A (n2, C))

- Hn2(-A(n 2,a)) = a/2, for A(n1,a) > t > A (n 2 ,a).

This is a contradiction and hence A(n,a) - A(n2 ,a). If lim A(n,a) = c > 0, then
n--oo

A(n, a) > c for all n, since A(n, a) is decreasing in n for each fixed a. Thus, by the

definition of A(n, a),

- = Hn(A (n,a)) _ Hn(c).
2
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By Assumption (B), as c > 0, Hn(c) - 1 as n -+ oo. Therefore, for n sufficiently

large, H,(C) 2 1 - > Hn(A(n, a)), which is a contradiction. Hence, we must have

A(n, a) -* 0 as n -- . El

We next evaluate the infimum of P,,,)(CSIR,) over (,a) E Q (PZ).

Theorem 3.4. The infimum of P(o,,)(CSIRl) over fI(PZ) occurs at the configuration

0111 = ... = ek- 1 1 = 0[kl - 6a and

inf P(e,,)(CSIR,) = Fn-'(y + 6 - A(n, a))dFn(y). (3.4)O(ez) -00

Proof:

PLe,)(CSIRj) = PL,){Yjkl- Yk-1 > A(n,a)o, Y(k) = Y[k]}

-P ,zj < Zk + O[kl - O j i A(n,a), j 1,... ,k-1}

> P(_,)Zj < Zk +6- \(n, a), k 1,...,- 11. (3.5)

The equality in (3.5) holds when Of[j = ... = 8(k-11= 0(k - 6o. Hence

inf P ,a,) (CS IRI = P(e9.,a){Zj < Zk + 6 - (n, a), 1 ,. k - 1}
n(Pz)

= f 00Fk-'(y + 6 - A(n, a))dF(y).

Remark 3.2.

(1) Since A(n, a) -* 0 as n -* oo for each 0 < a < 1, hence, by Assumption (B), we have,

for each fixed 6 >0, f00 F-'(y + 6- A(n,a))dFn(y) - 1 asn - oo.

(2) In order to satisfy the probability requirement (2.2), we may let the right hand side

of (3.4) equal P*. In practice, n is chosen to be the smallest integer such that (2.1)

and (2.2) are satisfied.
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4. SELECTION PROCEDURE WITH UNKNOWN SCALE PARAMETER

When the scale parameter a is unknown, it is assumed that Y = Y(X 1 , ... ,nX,)

be a complete sufficient statistic for the parameter 6i for each fixed a > 0. Let T =

T(Xi,,..., Xin) be a nonnegative function of Xi,. , Xin, such that T(X,1 - a.... , -

a) = T(X.,,... ,Xi,) and T(cz,,. . ,c ,) = cT(zl,... ,z,) for any c > 0. Also, let

S - S(T 1,... ,Tk) be a nonnegative function of Tl,... ,T such that S(cti,... ,ctk) =

cS(t,...,tk) for any c > 0. Since Yi is a complete sufficient statistic for 8 and the

distribution of T is independent of 8, hence T is independent of Y.. Therefore, S is

independent of (Y,...,Yk). Also, by the assumption, the distribution of W = S/a is

independent of the parameters 91,...,O9, and a. We estimate a by S and propose a

selection procedure R2 as follows:

R 2 : Select the population yielding Y[k] as the best population if Y[k] - Yk-11 >

A(n, a)S; otherwise, do not make a selection, where n and A(n, a) are chosen to satisfy the

probability requirements (2.1) and (2.2).

Firstly, we evaluate the supremum of P(,)(SIR2) over (_,a) E fl(NZ). In the fol-

lowing, let G(w) denote the cdf of W = S/a.

Theorem 4.1.

sup Pq,)(SR2 ) = 2 F, (y - A(n,a)w)dF,(y)dG(w). (4.1)
fl(NZ) f -

Proof:
Peo,=)(SIR 2) = PLO,){Yjkj - lk- > (n,a)S}

= a){Yfk - f[k- > A(n, a)aWIW}}

= j P,) {r[k]- Y- 11> A(n,a)ow}dG(w).
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By Theorem 3.2, we have

sup P(±,,){Y[k - Y[k- 1 1 > A(n,a)aw} = 2Hn(-A(n,a)w).
Q(NZ)

Hence

sup P(a,)(S R 2 ) = 2H,,(-A(n,a)w)dG(w)
O(NZ)

=2j L Fn(y- A(n,a)w)dF(y)dG(w). ED
00

For each 0 < a < 1, let A(n, a) be the solution of the equation

o Hn(-A(na)w)dG(w) = a/2. (4.2)

Then the probability requirement (2.1) is satisfied.

Remark 4.1. A(n, a) is nonnegative.

Lemma 4.2. The A(n, a) defined by (4.2) has the properties: (n, a) $ n and A(n, a) -- 0

as n -~ oo.

Proof: If n1 _> n 2 and (n,a) > (n2, a), then

a/2= H (-A(nl,a)w)dG(w) = 1- Hn (A(n1,a)w)dG(w)

< 1 f Hn,(A(n 2 ,a)w)dG(w) -f H,(-(n 2,a)w)dG(w) = a/2,

which is a contradiction. Hence A(n, a) is decreasing in n for each fixed a, 0 < a < 1.

Moreover, if lim A(n, a) = c > 0, then
0- 000

1 - a/2 = H (A(n,a)w)dG(w) > H(c)dG(w).

However, as c > 0, by Assumption (B), fo' H,(c)dG(w) -- 1 as n --+ oc, which leads to a

contradiction. Hence, A(n, a) --* 0 as n - + .oo
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Now we evaluate the infimum of P(±,,,)(CSIR2) over (j, ar) E 0 (PZ).

Theorem 4.3. The infimum of P(.,,) (CSIR2) over fl(PZ) occurs at the configuration

011= .. = 1 =9(k] - bao and

inf P , ,CSfR 2) = F,-(y + n, a)w)dF(y)dG(w). (4.3)OI(PZ) _0o

Proof:

P(e,.)(CSIR2) = P.,){Y[k - Y[k-1 1 > (n,a)S,Y(k) = Y[k]}

P, .{Z < Zk + -] (n,)w, j = 1,...,k- 1}
or

_P{Zj < Zk +b- ,(n, a)W, = 1,...,k- 1} (4.4)

-= f J Fn-(y + 6- A(n,a)w)dFn(y)dG(w).

The equality in (4.4) holds when 0[11 = =[k- = 0[k] - ba. El

Remark 4.2.

(1) For fixed w > 0 and 0 < a < 1, we htve A(n, a)w - 0 as n --- oo. Now by Assumption

(B), we have

7 f 0 F 1-'(y + 6- i(n,a)w)dF(y)dG(w) - 1 as n -*o.

(2) In order to satisfy the probability requirement (2.2), we may choose the smallest n

such that

fo f 0 Fl( + 6 - A(n,oe)w)dFn(y)dG(w) > P'. (4.5)

5. NORMAL MODEL CASE

In this section, it is assumed that the populations 7r,... rk have normal distributions

with means 09,... ,9 k, respectively, and a common variance c 2 . Let Xe,, j = 1,... ,n be
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n

independent samples from 7ri, i = 1,...,k andY1 = Xi = EI Xij, i = 1,...,k. Then
j=l

Y - N(6,, -- ) and Fn(z) = $(v/'x) where t is the cdf of the standard normal. One can

easily check that Assumptions (A) and (B) are satisfied. Also, we have H,(t) = t(V/1't).

We discuss both cases when the scale parameter a is known or unknown.

(a) a known case:

It follows from (3.3) that

(n, a) (5.1)

where Z,/2 denotes the upper a/2 quantile of the standard normal distribution. Thus, the

selection procedure is

RI: Select the population yielding YlkJ as the best population if Y[k] - Y[k-] >

-Z./2a'; otherwise, do not make a selection.

This is the same procedure as the one proposed by Chen (1985).

From equation (3.4), we have

inf P o)(CSIRj) = f k-(Y + Vf/6 - V/iZ,/ 2)d$(y).

O(PZ) 1-00

For giver . P* aid a, let d = V'b - V2za/2 be the solution to the equation

ok-i(y + d)df(y) = P (5.2)

Then the sample size required to satisfy the probability requirements (2.1) and (2.2) is

given by

n (=< d+VZ/ 2 ) 2 >

11



where < x > is the smallest integer not less than z. The solutions of d-values in equation

(5.2) can be found from Bechhofer (1954), Gupta (1963) and Gupta, Nagel and Pancha-

pakesan (1973).

(b) a unknown case:

n k
Let Tet E (X,, - Y,) 2 and S 2 - L T1

2/v, where v = k(n - 1). Then vS 2/U 2 
-

j=i i=1

vW 2 ~X., the X -distribution with degrees of freedom v.

For a E (0,1), we determine A(n, a) by solving the equation

1o0nHn(-A(na)w)dG(w) = a/2.

However, we can solve an easy equation in this case. Because

1f Hn-(na)w)dG(w) = P{Z < -A(n,a)W}

where Z - N(0, 2) andvW2  x are independent. Thus

fo Hn(-A(na)w)dG(w) = P{J zW< _V (n,a)

where -..s t1 . the t-distribution with degrees of freedom v. Hence i(na) =

Stv,al., where t,,,./ 2 is the upper a/2 quantile of the t. distribution.

Furthermore, from (4.5), n is the smallest integer such that

fJ r f 0."(y + rn'6 - V'2t,,a/2w)d§(y)dG(w) > P'.

Remark: Although this result is the same as that of Chen (1985), the concept is different.

Chen's method should specify the ratio 6"/o in advance. However, we need not make this

assumption in our approach.
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6. A TWO-STAGE PROCEDURE WHEN SCALE PARAMETER IS UNKNOWN

If we partition the parameter space 0l into three parts as follows.

6(PZ) = {(,o) E nl[ j - 0[kx-1 _ 6!, 6" > 0}

,(NZ) = {(,o) E nlOk,-1] = O#kJ},

and

fl(IZ) = 11 - 6(PZ) - fl(NZ).

If o were known, we can take 6 = 6*/u,, then the result is the same as that of Section

3. When o is unknown, a single-stage procedure does not exist for this problem. In the

following, we consider the normal case only. Analogous to that of Bechhofer, Dunnett and

Sobel (1954), a two-stage selection procedure R3 is proposed as follows:

(i) Take an initial sample of size no from each of the k populations, say Xi1,..., Xi,, i =

,. . k.

Sno k no
Let Y(no) = n_ Ej X ii and So = F, E (Xii - Y(no)) 2 /vo, vo = k(no - 1), and

o=1 i=1"=1
Wo = So/7.
(ii) Define N = max{no, < S >1, where h > VVV,,,1,/ is determined by

jO fO 0k-'(y + (h - v/2tUo, 2/)w)d4(y)dGo(w), (6.1)

where Go(w) is the cdf of W0 .

(iii) If necessary, take N - no additional observations from each of the k populations and

compute
1N

Y (N) E Xq i = I,..,k.

(iv) The selection rule R3 is defined by:
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R 3 : Select the population yielding Y[kl (N) as the best population if Y[k](N)-Y[k-_](N)

>,.NSo; otherwise do not make a selection; here A is chosen to satisfy the probability

requirement (2.1).

For the procedure R3 defined above, we have the following result:

Theorem 6.1.

sup P(e,)(SIRs) = P{ITI > -}, (6.2)
Ol(NZ)

where T follows a Student's t-distribution with vo degrees of freedom.

Proof: Let An = {N = n}, then An. = {W2 _ !xA-} and

A, {(n - 1* W2 n6*2 }

h2a62 <Wo h ifn>no.

o,)= o (Y[ N) - [k- ](N) > AIN-

= : f J &){,o- VN -(N > \wldGo(w)

P ) I> AwdGo(w).

For (,a) E fI (NZ), we have

00

sup P(S = [ > AwjdGo(w)

=lNZ a,)(tR3)= ,12.f

Cw
LIAf 20(--\)dGo(w)

f J2(- )dGo(w)

A
-P{ITI>-}7 T-t". 0

In order to satisfy the probability requirement (2.1), we set P{ITI > 'I} a. Then

14



Now, we evaluate the infimum of P8.o)(CSIR3 ) over (_%a) E 6(PZ).

Theorem 6.2. The infimum of Pe )(CSIR 3) over fi(PZ) occurs at the configuration

611] - ... = d[k-1I = O1k] - * and

inf P )(CSIR3 ) > f 0 bk-(y + (h - V2t0 ,,a/ 2)w)d( (y)dGo(w). (6.3)
](PZ) c

Proof:

P ., ,)(CSIR3 ) = P , ,){Y(j)(N) < Y(k)(N) - A So, j = 1,... ,k - 1}

P', a){zj < z + Wo, j ... , k- 1(

_P~e, .) Zj < Zk + - W0, j k l.,/- 1) (6.4)

>Pe, a,){Zi < Zk + (h- A)Wo, j =1,...,k- 1}, since VN I -

= f J k-'(y + (h - A)w)dO(y)dGo(w). (6.5)

The equality in (6.4) holds when 0 (1 =Ofk1] = 6(k]-5*. The A in (6.5) is N/2t,, a/2.

In order to satisfy the probability requirement (2.2), let d be the solution of

fj f §k-1(y + dw)d4b(y)dGo(w) = P*. (6.6)

Then h = v2'2t,0 , ./2 + d.
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